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Abstract

We introduce Qwen2.5-VL, the latest flagship model of Qwen vision-language series,
which demonstrates significant advancements in both foundational capabilities and
innovative functionalities. Qwen2.5-VL achieves a major leap forward in understanding
and interacting with the world through enhanced visual recognition, precise object local-
ization, robust document parsing, and long-video comprehension. A standout feature of
Qwen2.5-VL is its ability to localize objects using bounding boxes or points accurately. It
provides robust structured data extraction from invoices, forms, and tables, as well as
detailed analysis of charts, diagrams, and layouts. To handle complex inputs, Qwen2.5-
VL introduces dynamic resolution processing and absolute time encoding, enabling it
to process images of varying sizes and videos of extended durations (up to hours) with
second-level event localization. This allows the model to natively perceive spatial scales
and temporal dynamics without relying on traditional normalization techniques. By
training a native dynamic-resolution Vision Transformer (ViT) from scratch and incorpo-
rating Window Attention, we have significantly reduced computational overhead while
maintaining native resolution. As a result, Qwen2.5-VL excels not only in static image
and document understanding but also as an interactive visual agent capable of reasoning,
tool usage, and task execution in real-world scenarios such as operating computers and
mobile devices. The model achieves strong generalization across domains without requir-
ing task-specific fine-tuning. Qwen2.5-VL is available in three sizes, addressing diverse
use cases from edge Al to high-performance computing. The flagship Qwen2.5-VL-72B
model matches state-of-the-art models like GPT-40 and Claude 3.5 Sonnet, particularly
excelling in document and diagram understanding. The smaller Qwen2.5-VL-7B and
Qwen2.5-VL-3B models outperform comparable competitors, offering strong capabilities
even in resource-constrained environments. Additionally, Qwen2.5-VL maintains robust
linguistic performance, preserving the core language competencies of the Qwen2.5 LLM.
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1 Introduction

Large vision-language models ( LVLMs ) (OpenAl, 2024; Anthropic, 2024a; Team et al., 2023; Wang et al.,,
2024f) represent a pivotal breakthrough in artificial intelligence, signaling a transformative approach to
multimodal understanding and interaction. By seamlessly integrating visual perception with natural
language processing, these advanced models are fundamentally reshaping how machines interpret and
analyze complex information across diverse domains. Despite significant advancements in multimodal
large language models, the current capabilities of these models can be likened to the middle layer of a
sandwich cookie—competent across various tasks but falling short of exceptional performance. Fine-
grained visual tasks form the foundational layer of this analogy. In this iteration of Qwen2.5-VL, we
are committed to exploring fine-grained perception capabilities, aiming to establish a robust foundation
for LVLMSs and create an agentic amplifier for real-world applications. The top layer of this framework
is multi-modal reasoning, which is enhanced by leveraging the latest Qwen2.5 LLM and employing
multi-modal QA data construction.

A spectrum of works have promoted the development of multimodal large models, characterized by
architectural design, visual input processing, and data curation. One of the primary drivers of progress
in LVLMs is the continuous innovation in architecture. The studies presented in (Alayrac et al., 2022;
Li et al., 2022a; 2023b; Liu et al., 2023b;a; Wang et al., 2024i; Zhang et al., 2024b; Wang et al., 2023) have
incrementally shaped the current paradigm, which typically consists of a visual encoder, a cross-modal
projector, and LLM. Fine-grained perception models have emerged as another crucial area. Models like
(Xiao et al., 2023; Liu et al., 2023c; Ren et al., 2024; Zhang et al., 2024a;d; Peng et al., 2023; Deitke et al.,
2024) have pushed the boundaries of what is possible in terms of detailed visual understanding. The
architectures of Omni (Li et al., 2024g; 2025b; Ye et al., 2024) and MoE (Riquelme et al., 2021; Lee et al.,
2024; Li et al., 2024h;c; Wu et al., 2024b) also inspire the future evolution of LVLMs. Enhancements in
visual encoders (Chen et al., 2023; Liu et al., 2024b; Liang et al., 2025) and resolution scaling (Li et al.,
2023c; Ye et al., 2023; Li et al., 2023a) have played a pivotal role in improving the quality of practical
visual understanding. Curating data with more diverse scenarios and higher-quality is an essential step
in training advanced LVLMSs. The efforts proposed in (Guo et al., 2024; Chen et al., 2024d; Liu et al., 2024a;
Chen et al., 2024a; Tong et al., 2024; Li et al., 2024a) are highly valuable contributions to this endeavor.

However, despite their remarkable progress, vision-language models currently face developmental
bottlenecks, including computational complexity, limited contextual understanding, poor fine-grained
visual perception, and inconsistent performance across varied sequence length.

In this report, we introduce the latest work Qwen2.5-VL, which continues the open-source philosophy of
the Qwen series, achieving and even surpassing top-tier closed-source models on various benchmarks.
Technically, our contributions are four-folds: (1) We implement window attention in the visual encoder to
optimize inference efficiency; (2) We introduce dynamic FPS sampling, extending dynamic resolution to
the temporal dimension and enabling comprehensive video understanding across varied sampling rates;
(3) We upgrade MRoPE in the temporal domain by aligning to absolute time, thereby facilitating more
sophisticated temporal sequence learning; (4) We make significant efforts in curating high-quality data
for both pre-training and supervised fine-tuning, further scaling the pre-training corpus from 1.2 trillion
tokens to 4.1 trillion tokens.

The sparkling characteristics of Qwen2.5-VL are as follows:

¢ Powerful document parsing capabilities: Qwen2.5-VL upgrades text recognition to omni-
document parsing, excelling in processing multi-scene, multilingual, and various built-in (hand-
writing, tables, charts, chemical formulas, and music sheets) documents.

¢ Precise object grounding across formats: Qwen2.5-VL unlocks improved accuracy in detecting,
pointing, and counting objects, accommodating absolute coordinate and JSON formats for
advanced spatial reasoning.

e Ultra-long video understanding and fine-grained video grounding: Our model extends native
dynamic resolution to the temporal dimension, enhancing the ability to understand videos lasting
hours while extracting event segments in seconds.

¢ Enhanced agent Functionality for computer and mobile devices: Leverage advanced grounding,
reasoning, and decision-making abilities, boosting the model with superior agent functionality
on smartphones and computers.
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Figure 1: The Qwen2.5-VL framework demonstrates the integration of a vision encoder and a language
model decoder to process multimodal inputs, including images and videos. The vision encoder is
designed to handle inputs at their native resolution and supports dynamic FPS sampling. Images of
varying sizes and video frames with different FPS rates are dynamically mapped to token sequences
of varying lengths. Notably, MRoPE aligns time IDs with absolute time along the temporal dimension,
enabling the model to better comprehend temporal dynamics, such as the pace of events and precise
moment localization. The processed visual data is subsequently fed into the Qwen2.5 LM Decoder. We
have re-engineered the vision transformer (ViT) architecture, incorporating advanced components such
as FFN with SwiGLU activation, RMSNorm for normalization, and window-based attention mechanisms
to enhance performance and efficiency.

2 Approach

In this section, we first outline the architectural updates of the Qwen2.5-VL series models and provide an
overview of the data and training details.

2.1 Model Architecture

The overall model architecture of Qwen2.5-VL consists of three components:

Large Language Model: The Qwen2.5-VL series adopts large language models as its foundational
component. The model is initialized with pre-trained weights from the Qwen2.5 LLM. To better meet the
demands of multimodal understanding, we have modified the 1D RoPE (Rotary Position Embedding) to
our Multimodal Rotary Position Embedding Aligned to Absolute Time.

Vision Encoder: The vision encoder of Qwen2.5-VL employs a redesigned Vision Transformer (ViT)
architecture. Structurally, we incorporate 2D-RoPE and window attention to support native input
resolutions while accelerating the computation of the entire visual encoder. During both training and
inference, the height and width of the input images are resized to multiples of 28 before being fed into the
ViT. The vision encoder processes images by splitting them into patches with a stride of 14, generating a
set of image features. We provide a more detailed introduction to the vision encoder in Section 2.1.1.

MLP-based Vision-Language Merger: To address the efficiency challenges posed by long sequences
of image features, we adopt a simple yet effective approach to compress the feature sequences before
feeding them into the large language model (LLM). Specifically, instead of directly using the raw patch



features extracted by the Vision Transformer (ViT), we first group spatially adjacent sets of four patch
features. These grouped features are then concatenated and passed through a two-layer multi-layer
perceptron (MLP) to project them into a dimension that aligns with the text embeddings used in the
LLM. This method not only reduces computational costs but also provides a flexible way to dynamically
compress image feature sequences of varying lengths.

In Table 1, the architecture and configuration of Qwen2.5-VL are detailed.

Configuration Qwen2.5-VL-3B Qwen2.5-VL-7B  Qwen2.5-VL-72B
Vision Transformer (ViT)

Hidden Size 1280 1280 1280

# Layers 32 32 32

# Num Heads 16 16 16

Intermediate Size 3456 3456 3456

Patch Size 14 14 14

Window Size 112 112 112

Full Attention Block Indexes {7, 15, 23, 31} {7, 15, 23, 31} {7, 15, 23, 31}
Vision-Language Merger

In Channel 1280 1280 1280

Out Channel 2048 3584 8192

Large Language Model (LLM)

Hidden Size 2048 3,584 8192

# Layers 36 28 80

# KV Heads 2 4 8

Head Size 128 128 128

Intermediate Size 4864 18944 29568

Embedding Tying 4 X X

Vocabulary Size 151646 151646 151646

# Trained Tokens 41T 41T 41T

Table 1: Configuration of Qwen2.5-VL.

2.1.1 Fast and Efficient Vision Encoder

The vision encoder plays a pivotal role in multimodal large language models (MLLMs). To address
the challenges posed by computational load imbalances during training and inference due to native
resolution inputs, we have redesigned the Vision Transformer (ViT) architecture. A key issue arises from
the quadratic computational complexity associated with processing images of varying sizes. To mitigate
this, we introduce windowed attention in most layers, which ensures that computational cost scales
linearly with the number of patches rather than quadratically. In our architecture, only four layers employ
full self-attention, while the remaining layers utilize windowed attention with a maximum window
size of 112x 112 (corresponding to 8 x8 patches). Regions smaller than 112x112 are processed without
padding, preserving their original resolution. This design allows the model to operate natively at the
input resolution, avoiding unnecessary scaling or distortion.

For positional encoding, we adopt 2D Rotary Positional Embedding (RoPE) to effectively capture spatial
relationships in 2D space. Furthermore, to better handle video inputs, we extend our approach to 3D
patch partitioning. Specifically, we use 14 x 14 image patches as the basic unit, consistent with traditional
ViTs for static images. For video data, two consecutive frames are grouped together, significantly reducing
the number of tokens fed into the language model. This design not only maintains compatibility with
existing architectures but also enhances efficiency when processing sequential video data.

To streamline the overall network structure, we align the ViT architecture more closely with the design
principles of large language models (LLMs). Specifically, we adopt RMSNorm (Zhang &Sennrich, 2019)
for normalization and SwiGLU (Dauphin et al., 2017) as the activation function. These choices enhance
both computational efficiency and compatibility between the vision and language components of the
model.

In terms of training, we train the redesigned ViT from scratch. The training process consists of several
stages, including CLIP pre-training, vision-language alignment, and end-to-end fine-tuning. To ensure
robustness across varying input resolutions, we employ dynamic sampling at native resolutions during



training. Images are randomly sampled according to their original aspect ratios, enabling the model
to generalize effectively to inputs of diverse resolutions. This approach not only improves the model’s
adaptability but also ensures stable and efficient training across different sizes of visual data.

2.1.2 Native Dynamic Resolution and Frame Rate

Qwen2.5-VL introduces advancements in both spatial and temporal dimensions to handle diverse
multimodal inputs effectively.

In the spatial domain, Qwen2.5-VL dynamically converts images of varying sizes into sequences of
tokens with corresponding lengths. Unlike traditional approaches that normalize coordinates, our model
directly uses the actual dimensions of the input image to represent bounding boxes, points, and other
spatial features. This allows the model to learn scale information inherently, improving its ability to
process images across different resolutions.

For video inputs, Qwen2.5-VL incorporates dynamic frame rate (FPS) training and absolute time encoding.
By adapting to variable frame rates, the model can better capture the temporal dynamics of video content.
Unlike other approaches that incorporate textual timestamps or utilize additional heads to enable
temporal grounding, we introduce a novel and efficient strategy that aligns MRoPE IDs directly with
the timestamps. This approach allows the model to understand the tempo of time through the intervals
between temporal dimension IDs, without necessitating any additional computational overhead.

2.1.3 Multimodal Rotary Position Embedding Aligned to Absolute Time

Positional embeddings are crucial for modeling sequential data in both vision and language modalities.
Building upon the Multimodal Rotary Position Embedding (MRoPE) introduced in Qwen2-VL, we extend
its capabilities to better handle temporal information in videos.

The MRoPE in Qwen2-VL decomposes the position embedding into three distinct components: temporal,
height, and width to effectively model multimodal inputs. For textual inputs, all three components use
identical position IDs, making MRoPE functionally equivalent to traditional 1D RoPE (Su et al., 2024).
For images, the temporal ID remains constant across visual tokens, while unique IDs are assigned to the
height and width components based on each token’s spatial position within the image. When processing
videos, which are treated as sequences of frames, the temporal ID increments for each frame, while the
height and width components follow the same assignment pattern as for static images.

However, in Qwen2-VL, the temporal position IDs in MRoPE were tied to the number of input frames,
which did not account for the speed of content changes or the absolute timing of events within the video.
To address this limitation, Qwen2.5-VL introduces a key improvement: aligning the temporal component
of MRoPE with absolute time. As shown in Figure 1, by leveraging the intervals between temporal IDs,
the model is able to learn consistent temporal alignment across videos with different FPS sampling rates.

2.2 Pre-Training

In this section, we first describe the construction of the pre-training dataset, followed by an overview of
the overall training pipeline and configuration.

2.2.1 Pre-Training Data

Compared to Qwen2-VL, we have significantly expanded the volume of our pre-training data, increasing
it from 1.2 trillion tokens to approximately 4 trillion tokens. Our pre-training dataset was constructed
through a combination of methods, including cleaning raw web data, synthesizing data, etc. The
dataset encompasses a wide variety of multimodal data, such as image captions, interleaved image-text
data, optical character recognition (OCR) data, visual knowledge (e.g., celebrity, landmark, flora, and
fauna identification), multi-modal academic questions, localization data, document parsing data, video
descriptions, video localization, and agent-based interaction data. Throughout the training process, we
carefully adjusted the composition and proportions of these data types at different stages to optimize
learning outcomes.

Interleaved Image-Text Data Interleaved image-text data is essential for multimodal learning, offering
three key benefits: (1) enabling in-context learning with simultaneous visual and textual cues (Alayrac
et al,, 2022), (2) maintaining strong text-only capabilities when images are missing (Lin et al., 2024), and
(3) containing a wide range of general information. However, much of the available interleaved data



lacks meaningful text-image associations and is often noisy, limiting its usefulness for complex reasoning
and creative generation.

To address these challenges, we developed a pipeline for scoring and cleaning data, ensuring only
high-quality, relevant interleaved data is used. Our process involves two steps: standard data cleaning (Li
et al., 2024e) followed by a four-stage scoring system using an internal evaluation model. The scoring
criteria include: (1) text-only quality, (2) image-text relevance, (3) image-text complementarity, and (4)
information density balance. This meticulous approach improves the model’s ability to perform complex
reasoning and generate coherent multimodal content.

The following is a description of these image-text scoring criteria:

Image-text Relevance: A higher score indicates a stronger connection between the image and text, where
the image meaningfully supplements, explains or expands on the text rather than just decorating it.

Information Complementarity: A higher score reflects greater complementary information between the
image and text. Each should provide unique details that together create a complete narrative.

Balance of Information Density: A higher score means a more balanced distribution of information
between the image and text, avoiding excessive text or image information, and ensuring an appropriate
balance between the two.

Grounding Data with Absolute Position Coordinates We adopt native resolution training with the aim
of achieving a more accurate perception of the world. In contrast, relative coordinates fail to effectively
represent the original size and position of objects within images. To address this limitation, Qwen2.5-VL
uses coordinate values based on the actual dimensions of the input images during training to represent
bounding boxes and points. This approach ensures that the model can better capture the real-world scale
and spatial relationships of objects, leading to improved performance in tasks such as object detection
and localization.

To improve the generalizability of grounding capabilities, we have developed a comprehensive dataset
encompassing bounding boxes and points with referring expressions, leveraging both publicly available
datasets and proprietary data. Our methodology involves synthesizing data into various formats, includ-
ing XML, JSON, and custom formats, employing techniques such as copy-paste augmentation (Ghiasi
et al., 2021) and synthesis with off-the-shelf models such as Grounding DINO (Liu et al., 2023c) and
SAM (Kirillov et al., 2023). This approach facilitates a more robust evaluation and advancement of
grounding abilities.

To enhance the model’s performance on open-vocabulary detection, we expanded the training dataset to
include over 10,000 object categories. Additionally, to improve the model’s effectiveness in extreme object
detection scenarios, we synthesized non-existent object categories within the queries and constructed
image data containing multiple instances for each object.

To ensure superior point-based object grounding capabilities, we have constructed a comprehensive
pointing dataset comprising both publicly available and synthetic data. Specifically, the data source
includes public pointing and counting data from PixMo (Deitke et al., 2024), publicly accessible object
grounding data (from both object detection and instance segmentation tasks), and data synthesized by an
automated pipeline for generating precise pointing data towards certain image details.

Document Omni-Parsing Data To train Qwen2.5-VL, we synthesized a large corpus of document
data. Traditional methods for parsing document content typically rely on separate models to handle
layout analysis, text extraction, chart interpretation, and illustration processing. In contrast, Qwen2.5-
VL is designed to empower a general-purpose model with comprehensive capabilities for parsing,
understanding, and converting document formats. Specifically, we incorporated a diverse array of
elements into the documents, such as tables, charts, equations, natural or synthetic images, music sheets,
and chemical formulas. These elements were uniformly formatted in HTML, which integrates layout box
information and descriptions of illustrations into HTML tag structures. We also enriched the document
layouts according to typical reading sequences and included the coordinates corresponding to each
module, such as paragraphs and charts, in the HTML-based ground truth. This innovative approach
allows the complete information of any document, including its layout, text, charts, and illustrations,
to be represented in a standardized and unified manner. As a result, Qwen2.5-VL achieves seamless
integration of multimodal document elements, thereby facilitating more efficient and accurate document
understanding and transformation.

Below is the QwenVL HTML format:



QwenVL HTML Format

<html><body>

# paragraph

<p data-bbox="x1 y1 x2 y2"> content </p>

# table

<style>tablefid} style</style><table data-bbox="x1 y1 x2 y2" class="table{id}"> table content
</table>

# chart

<div class="chart" data-bbox="x1 y1 x2 y2"> <img data-bbox="x1 y1 x2 y2" /><table> chart content
</table></div>

# formula

<div class="formula" data-bbox="x1 y1 x2 y2"> <img data-bbox="x1 y1 x2 y2" /> <div> formula
content </div></div>

# image caption

<div class="image caption" data-bbox="x1 y1 x2 y2"> <img data-bbox="x1 y1 x2 y2" /><p> image
caption </p></div>

# image ocr

<div class="image ocr" data-bbox="x1 y1 x2 y2"> <img data-bbox="x1 y1 x2 y2" /><p> image ocr
</p></div>

# music sheet

<div class="music sheet" format="abc notation" data-bbox="x1 y1 x2 y2"> <img data-bbox="x1 y1
x2 y2" /> <div> music sheet content </div></div>

# chemical formula content

<div class="chemical formula" format="smile" data-bbox="x1 y1 x2 y2"> <img data-bbox="x1 y1
x2y2" /> <div> chemical formula content </div></div>

</html></body>

.

This format ensures that all document elements are represented in a structured and accessible manner,
enabling efficient processing and understanding by Qwen2.5-VL.

OCR Data Data from different sources are gathered and curated to enhance the OCR performance,
including synthetic data, open-sourced data and in-house collected data. Synthetic data is generated
through a visual text generation engine to produce high-quality text images in the wild. To support
a wider range of languages and enhance multilingual capabilities, we have incorporated a large-scale
multilingual OCR dataset. This dataset includes support for diverse languages such as French, German,
Italian, Spanish, Portuguese, Arabic, Russian, Japanese, Korean, and Vietnamese. The dataset is carefully
curated to ensure diversity and quality, utilizing both high-quality synthetic images and real-world
natural scene images. This combination ensures robust performance across various linguistic contexts
and improves the model’s adaptability to different text appearances and environmental conditions. For
chart-type data, we synthesized 1 million samples using visualization libraries including matplotlib,
seaborn, and plotly, encompassing chart categories such as bar charts, relational diagrams, and heatmaps.
Regarding tabular data, we processed 6 million real-world samples through an offline end-to-end table
recognition model, subsequently filtering out low-confidence tables, overlapping tables, and tables with
insufficient cell density.

Video Data To ensure enhanced robustness in understanding video data with varying frames per second
(FPS), we dynamically sampled FPS during training to achieve a more evenly distributed representation of
FPS within the training dataset. Additionally, for videos exceeding half an hour in length, we specifically
constructed a set of long video captions by synthesizing multi-frame captions through a targeted synthesis
pipeline. Regarding video grounding data, we formulated timestamps in both second-based formats
and hour-minute-second-frame (hmsf) formats, ensuring that the model can accurately understand and
output time in various formats.

Agent Data We enhance the perception and decision-making abilities to build the agent capabilities of
Qwen2.5-VL. For perception, we collect screenshots on mobile, web, and desktop platforms. A synthetic
data engine is used to generate screenshot captions and Ul element grounding annotations. The caption
task helps Qwen2.5-VL understand the graphic interface, while the grounding task helps it align the
appearance and function of elements. For decision-making, we first unify the operations across mobile,
web, and desktop platforms into a function call format with a shared action space. A set of annotated
multi-step trajectories collected from open-source data and synthesized by agent framework (Wang et al.,
2025; 2024b;c) on virtual environments are reformatted into a function format. We further generate a



reasoning process for each step through human and model annotators (Xu et al., 2024). Specifically,
given a ground-truth operation, we highlight it on the screenshot. Then, we provide the global query,
along with screenshots from before and after this operation, to the annotators and require them to write
reasoning content to explain the intention behind this operation. A model-based filter is used to screen
out low-quality reasoning content. Such reasoning content prevents Qwen2.5-VL from overfitting to the
ground-truth operations and makes it more robust in real-world scenarios.

Stages Visual Pre-Training Multimodal Pre-Training Long-Context Pre-Training
* +
Image Caption Pure text .
Data Knowledge Interleaved Data %ggg Xli‘;ot
OCR VQA, Video Lon ]%oc%ment
Grounding, Agent &

Tokens 1.5T 2T 0.6T

Sequence length 8192 8192 32768

Training ViT ViT & LLM ViT & LLM

Table 2: Training data volume and composition across different stages.

2.2.2 Training Recipe

We trained a Vision Transformer (ViT) from scratch using DataComp (Gadre et al., 2023) and some
in-house datasets as the initialization for the vision encoder, while leveraging the pre-trained Qwen2.5
large language model (LLM) (Yang et al., 2024a) as the initialization for the LLM component. As shown
in Table 2, the pre-training process is divided into three distinct phases, each employing different data
configurations and training strategies to progressively enhance the model’s capabilities.

In the first phase, only the Vision Transformer (ViT) is trained to improve its alignment with the language
model, laying a solid foundation for multimodal understanding. The primary data sources during this
phase include image captions, visual knowledge, and OCR data. These datasets are carefully selected to
foster ViT’s ability to extract meaningful visual representations that can be effectively integrated with
textual information.

In the second phase, all model parameters are unfrozen, and the model is trained on a diverse set of mul-
timodal image data to enhance its capacity to process complex visual information. This phase introduces
more intricate and reasoning-intensive datasets, such as interleaved data, multi-task learning datasets,
visual question answering (VQA), multimodal mathematics, agent-based tasks, video understanding,
and pure-text datasets. These datasets strengthen the model’s ability to establish deeper connections
between visual and linguistic modalities, enabling it to handle increasingly sophisticated tasks.

In the third phase, to further enhance the model’s reasoning capabilities over longer sequences, video,
and agent-based data are incorporated, alongside an increase in sequence length. This allows the model
to tackle more advanced and intricate multimodal tasks with greater precision. By extending the sequence
length, the model gains the ability to process extended contexts, which is particularly beneficial for tasks
requiring long-range dependencies and complex reasoning.

To address the challenges posed by varying image sizes and text lengths, which can lead to imbalanced
computational loads during training, we adopted a strategy to optimize training efficiency. The primary
computational costs arise from the LLM and the vision encoder. Given that the vision encoder has
relatively fewer parameters and that we introduced window attention to further reduce its computational
demands, we focused on balancing the computational load of the LLM across different GPUs. Specifically,
we dynamically packed data samples based on their corresponding input sequence lengths to the LLM,
ensuring consistent computational loads. In the first and second phases, data were uniformly packed
to a sequence length of 8,192, while in the third phase, the sequence length was increased to 32,768 to
accommodate the model’s enhanced capacity for handling longer sequences.

2.3 Post-training

The post-training alignment framework of Qwen2.5-VL employs a dual-stage optimization paradigm
comprising Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO) (Rafailov et al.,
2023). This hierarchical alignment strategy synergizes parameter-efficient domain adaptation with human
preference distillation, addressing both representational grounding and behavioral refinement through
distinct optimization objectives.



Supervised Fine-Tuning (SFT) aims to bridge the gap between pretrained representations and downstream
task requirements through targeted instruction optimization. During this phase, we employ the ChatML
format (Openai, 2024) to structure instruction-following data, deliberately diverging from the pretraining
data schema while maintaining architectural consistency with Qwen2-VL (Wang et al., 2024e). This
format transition enables three critical adaptations: 1) Explicit dialogue role tagging for multimodal turn-
taking, 2) Structured injection of visual embeddings alongside textual instructions, and 3) Preservation of
cross-modal positional relationships through format-aware packing. By exposing the model to curated
multimodal instruction-response pairs under this enhanced schema, SFT enables efficient knowledge
transfer while maintaining the integrity of pre-trained features.

2.3.1 Instruction Data

The Supervised Fine-Tuning (SFT) phase employs a meticulously curated dataset designed to enhance
the model’s instruction-following capabilities across diverse modalities. This dataset comprises approxi-
mately 2 million entries, evenly distributed between pure text data (50%) and multimodal data (50%),
which includes image-text and video-text combinations. The inclusion of multimodal data enables the
model to process complex inputs effectively. Notably, although pure text and multimodal entries are
equally represented, multimodal entries consume significantly more tokens and computational resources
during training due to the embedded visual and temporal information. The dataset is primarily com-
posed of Chinese and English data, with supplementary multilingual entries to support broader linguistic
diversity.

The dataset is structured to reflect varying levels of dialogue complexity, including both single-turn
and multi-turn interactions. These interactions are further contextualized by scenarios ranging from
single-image inputs to multi-image sequences, thereby simulating realistic conversational dynamics.
The query sources are primarily drawn from open-source repositories, with additional contributions
from curated purchased datasets and online query data. This combination ensures broad coverage and
enhances the representativeness of the dataset.

To address a wide range of application scenarios, the dataset includes specialized subsets for General
Visual Question Answering (VQA), image captioning, mathematical problem-solving, coding tasks,
and security-related queries. Additionally, dedicated datasets for Document and Optical Character
Recognition (Doc and OCR), Grounding, Video Analysis, and Agent Interactions are constructed to
enhance domain-specific proficiency. Detailed information regarding the data can be found in the
relevant sections of the paper. This structured and diverse composition ensures that the SFT phase
effectively aligns pre-trained representations with the nuanced demands of downstream multimodal
tasks, fostering robust and contextually aware model performance.

2.3.2 Data Filtering Pipeline

The quality of training data is a critical factor influencing the performance of vision-language models.
Open-source and synthetic datasets typically exhibit significant variability, often containing noisy, redun-
dant, or low-quality samples. Therefore, rigorous data cleaning and filtering processes are essential to
address these issues. Low-quality data can lead to suboptimal alignment between pretrained representa-
tions and downstream task requirements, thereby diminishing the model’s ability to effectively handle
complex multimodal tasks. Consequently, ensuring high-quality data is paramount for achieving robust
and reliable model performance.

To address these challenges, we implement a two-stage data filtering pipeline designed to systematically
enhance the quality of the Supervised Fine-Tuning (SFT) dataset. This pipeline comprises the following
stages:

Stage 1: Domain-Specific Categorization In the initial stage, we employ Qwen2-VL-Instag, a specialized
classification model derived from Qwen2-VL-72B, to perform hierarchical categorization of question-
answer (QA) pairs. This model organizes QA pairs into eight primary domains, such as Coding and
Planning, which are further divided into 30 fine-grained subcategories. For example, the primary domain
Coding is subdivided into subcategories including Code_Debugging, Code_Generation, Code_Translation, and
Code_Understanding. This hierarchical structure facilitates domain-aware and subdomain-aware filtering
strategies, enabling the pipeline to optimize data-cleaning processes tailored to each category’s specific
characteristics. Consequently, this enhances the quality and relevance of the supervised fine-tuning (SFT)
dataset.

Stage 2: Domain-Tailored Filtering The second stage involves domain-tailored filtering, which inte-
grates both rule-based and model-based approaches to comprehensively enhance data quality. Given



the diverse nature of domains such as Document Processing, Optical Character Recognition (OCR), and
Visual Grounding, each may necessitate unique filtering strategies. Below, we provide an overview of the
general filtering strategies applied across these domains.

Rule-Based Filtering employs predefined heuristics to eliminate low-quality or problematic entries.
Specifically, for datasets related to Document Processing, OCR, and Visual Grounding tasks, repetitive
patterns are identified and removed to prevent distortion of the model’s learning process and ensure
optimal performance. Additionally, entries containing incomplete, truncated, or improperly formatted
responses—common in synthetic datasets and multimodal contexts—are excluded. To maintain relevance
and uphold ethical standards, queries and answers that are unrelated or could potentially lead to harmful
outputs are also discarded. This structured approach ensures that the dataset adheres to ethical guidelines
and meets task-specific requirements.

Model-Based Filtering further refines the dataset by leveraging reward models trained on the Qwen2.5-
VL series. These models evaluate multimodal QA pairs across multiple dimensions. Queries are assessed
for complexity and relevance, retaining only those examples that are appropriately challenging and
contextually pertinent. Answers are evaluated based on correctness, completeness, clarity, relevance
to the query, and helpfulness. In visual-grounded tasks, particular attention is given to verifying the
accurate interpretation and utilization of visual information. This multi-dimensional scoring ensures that
only high-quality data progresses to the SFT phase.

2.3.3 Rejection Sampling for Enhanced Reasoning

To complement our structured data filtering pipeline, we employ rejection sampling as a strategy to
refine the dataset and enhance the reasoning capabilities of the vision-language model (VLM). This
approach is particularly critical for tasks requiring complex inference, such as mathematical problem-
solving, code generation, and domain-specific visual question answering (VQA). Prior research has
shown that incorporating Chain-of-Thought (CoT) Wei et al. (2022) reasoning significantly improves a
model’s inferential performance. (DeepSeek-Al et al., 2024) Our post-training experiments confirm this,
underscoring the importance of structured reasoning processes for achieving high-quality outcomes.

The rejection sampling process begins with datasets enriched with ground truth annotations. These
datasets are carefully curated to include tasks that demand multi-step reasoning, such as mathematical
problem-solving, code generation, and domain-specific VQA. Using an intermediate version of the
Qwen2.5-VL model, we evaluate the generated responses against the ground truth. Only samples where
the model’s output matches the expected answers are retained, ensuring the dataset consists solely of
high-quality, accurate examples.

To further improve data quality, we apply additional constraints to filter out undesirable outputs.
Specifically, we exclude responses that exhibit code-switching, excessive length, or repetitive patterns.
These criteria ensure clarity and coherence in the CoT reasoning process, which is crucial for downstream
applications.

A key challenge in applying CoT reasoning to vision-language models is their reliance on both textual
and visual modalities. Intermediate reasoning steps may fail to adequately integrate visual information,
either by ignoring relevant visual cues or misinterpreting them. To address this, we have developed
rule-based and model-driven filtering strategies to validate the accuracy of intermediate reasoning steps.
These mechanisms ensure that each step in the CoT process effectively integrates visual and textual
modalities. Despite these efforts, achieving optimal modality alignment remains an ongoing challenge
that requires further advancements.

The data generated through rejection sampling significantly enhances the model’s reasoning proficiency.
By iteratively refining the dataset and removing low-quality or erroneous samples, we enable the model
to learn from high-fidelity examples that emphasize accurate and coherent reasoning. This methodology
not only strengthens the model’s ability to handle complex tasks but also lays the groundwork for future
improvements in vision-language modeling.

2.3.4 Training Recipe

The post-training process for Qwen2.5-VL consists of two phases: Supervised Fine-Tuning (SFT) and
Direct Preference Optimization (DPO), both with the Vision Transformer (ViT) parameters frozen. In the
SFT phase, the model is fine-tuned on diverse multimodal data, including image-text pairs, video, and
pure text, sourced from general VQA, Rejection Sampling, and specialized datasets such as Document
and OCR, Grounding, Video, and Agent-related tasks. The DPO phase focuses exclusively on image-text
and pure text data, utilizing preference data to align the model with human preferences, with each sample
processed only once to ensure efficient optimization. This streamlined process enhances the model’s
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cross-modal reasoning and task-specific performance while maintaining alignment with user intent.

3 Experiments

In this section, we first introduce the overall model and compare it with the current state-of-the-art (SoTA)
models. Then, we evaluate the model’s performance across various sub-capabilities.

3.1 Comparison with the SOTA Models

Table 3: Performance of Qwen2.5-VL and State-of-the-art.

Dataset Previous Claude-3.5 GPT-40 InternVL2.5 Qwen2-VL Qwen2.5-VL Qwen2.5-VL Qwen2.5-VL
atasets Open-source SOTA  Sonnet-0620 0513 78B 72B 72B 7B B
College-level Problems
MMMU,,; (Yue et al., 2023) 70.1 Chen et al. (2024d) 68.3 69.1 70.1 64.5 70.2 58.6 53.1
MMMU-Progyeran (Yue et al., 2024) 48.6 Chen et al. (2024d) 515 51.9 48.6 46.2 51.1 383 31.56
Math
MathVistamin; (Lu et al., 2024) 72.3 Chen et al. (2024d) 67.7 63.8 72.3 70.5 74.8 68.2 62.3
MATH-Visiongy; (Wang et al., 2024d) 32.2 Chen et al. (2024d) - 30.4 322 25.9 38.1 25.1 212
MathVersenini (Zhang et al., 2024c) 51.7 Chen et al. (2024d) - 50.2 51.7 - 57.6 49.2 47.6
General Visual Question Answering
MegaBench (Chen et al., 2024b) 47.4 MiniMax et al. (2025) 52.1 54.2 45.6 46.8 51.3 36.8 289
MMBench-ENgeg (Liu et al., 2023d) 88.3 Chen et al. (2024d) 82.6 834 88.3 86.9 88.6 835 79.1
MMBench-CNiest (Liu et al., 2023d) 88.5 Chen et al. (2024d) 83.5 82.1 88.5 86.7 87.9 83.4 78.1
MMBench-V1.1-ENgest (Liu et al., 2023d)  87.4 Chen et al. (2024d) 80.9 83.1 87.4 86.1 88.4 82.6 774
MMStar (Chen et al., 2024c) 69.5 Chen et al. (2024d) 65.1 64.7 69.5 68.3 70.8 63.9 55.9
MMEgum (Fu et al., 2023) 2494 Chen et al. (2024d) 1920 2328 2494 2483 2448 2347 2157
MuirBench (Wang et al., 2024a) 63.5 Chen et al. (2024d) - 68.0 63.5 - 70.7 59.6 47.7
BLINK,,; (Fu et al., 2024c) 63.8 Chen et al. (2024d) - 68.0 63.8 - 64.4 56.4 47.6
CRPE ejation (Wang et al., 2024h) 78.8 Chen et al. (2024d) - 76.6 78.8 - 79.2 76.4 736
HallBenchayg (Guan et al., 2023) 58.1 Wang et al. (2024f) 55.5 55.0 574 58.1 55.2 529 46.3
MTVQA (Tang et al., 2024) 31.9 Chen et al. (2024d) 25.7 27.8 31.9 30.9 31.7 29.2 24.8
RealWorldQA,vg (XAl 2024) 78.7 Chen et al. (2024d) 60.1 754 78.7 77.8 75.7 68.5 65.4
MME-RealWorlde, (Zhang et al., 2024f)  62.9 Chen et al. (2024d) 51.6 452 629 - 63.2 574 53.1
MM Vet po (Yu et al., 2024) 74.0 Wang et al. (2024) 70.1 69.1 723 74.0 76.2 67.1 61.8
MM-MT-Bench (Agrawal et al., 2024) 7.4 Agrawal et al. (2024) 7.5 7.72 - 6.59 7.6 6.3 57

The experimental section evaluates the performance of Qwen2.5-VL across a variety of datasets, compar-
ing it with state-of-the-art models such as Claude-3.5-Sonnet-0620 (Anthropic, 2024a), GPT-40-0513 (Ope-
nAl, 2024), InternVL2.5 (Chen et al., 2024d), and different sizes of Qwen2-VL (Wang et al., 2024e). In
college-level problems, Qwen2.5-VL-72B achieves a score of 70.2 on MMMU (Yue et al., 2023). For MMMU-
Pro (Yue et al., 2024), Qwen2.5-VL-72B scores 51.1, surpassing the previous open-source state-of-the-art
models and achieving performance comparable to GPT-4o0.

In math-related tasks, Qwen2.5-VL-72B demonstrates strong capabilities. On MathVista (Lu et al., 2024),
it achieves a score of 74.8, outperforming the previous open-source state-of-the-art score of 72.3. For
MATH-Vision (Wang et al., 2024d), Qwen?2.5-VL-72B scores 38.1, while MathVerse (Zhang et al., 2024c)
achieves 57.6, both showing competitive results compared to other leading models.

For general visual question answering, Qwen2.5-VL-72B excels across multiple benchmarks. On MMbench-
EN (Liu et al., 2023d), it achieves a score of 88.6, slightly surpassing the previous best score of 88.3. The
model also performs well in MuirBench (Wang et al., 2024a) with a score of 70.7 and BLINK (Fu et al.,
2024c) with 64.4. In the multilingual capability evaluation of MTVQA (Tang et al., 2024), Qwen2.5-VL-72B
achieves a score of 31.7, showcasing its powerful multilingual text recognition abilities. In subjective
evaluations such as MM Vet (Yu et al., 2024) and MM-MT-Bench (Agrawal et al., 2024), Qwen2.5-VL-72B
scores 76.2 and 7.6, respectively, demonstrating excellent natural conversational experience and user
satisfaction.

3.2 Performance on Pure Text Tasks

To critically evaluate the performance of instruction-tuned models on pure text tasks, as illustrated in
Table 4, we selected several representative benchmarks to assess the model’s capabilities across a variety
of domains, including general tasks (Wang et al., 2024j; Gema et al., 2024; White et al., 2024), mathematics
and science tasks (Rein et al., 2023; Hendrycks et al., 2021; Cobbe et al., 2021), coding tasks (Chen et al.,
2021; Cassano et al., 2023), and alignment task (Zhou et al., 2023). We compared Qwen2.5-VL with
several large language models (LLMs) of similar size. The results demonstrate that Qwen2.5-VL not only
achieves state-of-the-art (S0TA) performance on multimodal tasks but also exhibits leading performance
on pure text tasks, showcasing its versatility and robustness across diverse evaluation criteria.
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Table 4: Performance on pure text tasks of the 70B+ Instruct models and Qwen2.5-VL.

Datasets Llama-3.1-70B Llama-3.1-405B Qwen2-72B Qwen2.5-72B Qwen2.5-VL-72B
General Tasks

MMLU-Pro 66.4 73.3 64.4 71.1 71.2

MMLU-redux 83.0 86.2 81.6 86.8 85.9

LiveBench-0831 46.6 53.2 41.5 52.3 57.0

Mathematics & Science Tasks

GPQA 46.7 51.1 424 49.0 49.0

MATH 68.0 73.8 69.0 83.1 83.0

GSMS8K 95.1 96.8 93.2 95.8 95.3
Coding Tasks

HumanEval 80.5 89.0 86.0 86.6 87.8

MultiPL-E 68.2 73.5 69.2 75.1 79.5

Alignment Tasks
IFEval 83.6 86.0 77.6 84.1 86.3

3.3 Quantitative Results

3.3.1 General Visual Question Answering

To comprehensively evaluate the model’s capabilities in general visual question answering (VQA)
and dialogue, we conducted extensive experiments across a diverse range of datasets. As illustrated
in Table 3, Qwen2.5-VL demonstrates state-of-the-art performance in various VQA tasks, subjective
evaluations, multilingual scenarios, and multi-image questions. Specifically, it excels on benchmark
datasets such as MMBench series (Liu et al., 2023d), MMStar (Chen et al., 2024c), MME (Fu et al., 2023),
MuirBench (Wang et al., 2024a), BLINK(Fu et al., 2024c), CRPE (Wang et al., 2024h), HallBench (Guan
et al., 2023), MTVQA (Tang et al., 2024), MME-RealWorld (Zhang et al., 2024f), MM Vet (Yu et al., 2024),
and MM-MT-Bench (Agrawal et al., 2024).

In the domain of visual detail comprehension and reasoning, Qwen2.5-VL-72B achieves an accuracy of
88.4% on the MMBench-EN-V1.1 dataset, surpassing previous state-of-the-art models such as InternVL2.5
(78B) and Claude-3.5 Sonnet-0620. Similarly, on the MMStar dataset, Qwen2.5-VL attains a score of 70.8%,
outperforming other leading models in this benchmark. These results underscore the model’s robustness
and adaptability across diverse linguistic contexts.

Furthermore, in high-resolution real-world scenarios, specifically on the MME-RealWorld benchmark,
Qwen2.5-VL demonstrates state-of-the-art performance with a score of 63.2, showcasing its broad adapt-
ability to realistic environments. Additionally, in multi-image understanding tasks evaluated on the
MuirBench dataset, Qwen2.5-VL achieves a leading score of 70.7, further highlighting its superior
generalization capabilities. Collectively, these results illustrate the strong versatility and effectiveness
of Qwen2.5-VL in addressing general-purpose visual question answering (VQA) tasks across various
scenarios.

Notably, even the smaller-scale versions of Qwen2.5-VL, specifically Qwen2.5-VL-7B and Qwen2.5-VL-3B,
exhibit highly competitive performance. For instance, on the MMStar dataset, Qwen2.5-VL-7B achieves
63.9%, while Qwen?2.5-VL-3B scores 55.9%. This demonstrates that Qwen2.5-VL's architecture is not only
powerful but also scalable, maintaining strong performance even with fewer parameters.

3.3.2 Document Understanding and OCR

We evaluated our models across a diverse range of OCR, chart, and document understanding bench-
marks. Table 5 demonstrates the performance comparison between Qwen2.5-VL models and top-
tier models on following OCR-related benchmarks: AI2D (Kembhavi et al., 2016), TextVQA (Singh
et al., 2019), DocVQA (Mathew et al., 2021b), InfoVQA (Mathew et al., 2021a), ChartQA (Masry et al.,
2022), CharXiv (Wang et al., 2024k), SEED-Bench-2-Plus (Li et al., 2024b), OCRBench (Liu et al., 2023e),
OCRBench_v2 (Fu et al., 2024b), CC-OCR (Yang et al., 2024b), OmniDocBench (Ouyang et al., 2024),
VCR (Zhang et al., 2024e).

For OCR-related parsing benchmarks on element parsing for multi-scene, multilingual, and various
built-in (handwriting, tables, charts, chemical formulas, and mathematical expressions) documents,
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as CC-OCR and OmniDocBench, Qwen2.5-VL-72B model sets the new state-of-the-art due to curated
training data and excellent capability of LLM models.

For OCR-related understanding benchmarks for scene text, chart, diagram and document, Qwen2.5-VL
models achieve impressive performance with good understanding abilities. Notably, on composite
OCR-related understanding benchmarks as OCRBench, InfoVQA which focusing on infographics, and
SEED-Bench-2-Plus covering text-rich scenarios including charts, maps, and webs, Qwen2.5-VL-72B
achieves remarkable results, significantly outperforming strong competitors such as InternVL2.5-78B.

Furthermore, for OCR-related comprehensive benchmarks as OCRBench_v2 including a wide range
of OCR-related parsing and understanding tasks, top performance is also achieved by Qwen2.5-VL
models, largely exceeding best model Gemini 1.5-Pro by 9.6% and 20.6% for English and Chinese track
respectively.

Table 5: Performance of Qwen2.5-VL and other models on OCR, chart, and document understanding
benchmarks.

Claude-3.5 Gemini 1.5 GPT InternVL2.5 Qwen2.5-VL Qwen2.5-VL Qwen2.5-VL

Datasets Sonnet Pro 40 78B 72B 7B 3B
OCR-related Parsing Tasks
CC-OCR 62.5 73.0 66.9 64.7 79.8 77.8 74.5

OmniDocBenchegit en/znd 0.330/0.381 0.230/0.281 0.265/0.435 0.275/0.324 0.226/0.324  0.308/0.398  0.409/0.543
OCR-related Understanding Tasks

AI2Dy, M. 81.2 88.4 84.6 89.1 88.7 83.9 81.6
TextVQA, 4 76.5 78.8 774 83.4 83.5 84.9 79.3
DocVQA est 95.2 93.1 91.1 95.1 96.4 95.7 93.9
InfoVQAest 74.3 81.0 80.7 84.1 87.3 82.6 77.1
ChartQAtest Avg. 90.8 872 86.7 88.3 89.5 87.3 84.0
CharXivrq/pQ 60.2/84.3 433/72.0 47.1/845 42.4/823 49.7/87.4 425/73.9 31.3/58.6
SEED-Bench-2-Plus 71.7 70.8 72.0 713 73.0 70.4 67.6
OCRBench 788 754 736 854 885 864 797
VCREn-Hard-EM 41.7 28.1 732 - 79.8 80.5 37.5
OCR-related Comprehensive Tasks
OCRBench_v2¢, /.1 452/39.6 51.9/43.1 465/322  49.8/52.1 61.5/63.7 56.3/57.2 54.3/52.1

3.3.3 Spatial Understanding

Understanding spatial relationships is crucial for developing AI models that can interpret and interact
with the world as humans do. In Large Vision-Language Models, visual grounding allows for the precise
localization and identification of specific objects, regions, or elements within an image based on natural
language queries or descriptions. This capability transcends traditional object detection by establishing
a semantic relationship between visual content and linguistic context, facilitating more nuanced and
contextually aware visual reasoning. We evaluated Qwen2.5-VL’s grounding capabilities on the referring
expression comprehension benchmarks (Kazemzadeh et al., 2014; Mao et al., 2016), object detection in the
wild (Li et al., 2022b), self-curated point grounding benchmark, and CountBench (Paiss et al., 2023).

We compare Qwen2.5-VL's visual grounding capabilities with other leading LVLMs including Gemini,
Grounding-DINO (Liu et al., 2023c), Molmo (Deitke et al., 2024), and InternVL2.5.

Qwen2.5-VL achieves leading performance across different benchmarks from box-grounding, and point-
grounding to counting. By equipping Qwen2.5-VL with both box and point-grounding capability, it
is able to understand, locate, and reason on the very details of certain parts of an image. For open-
vocabulary object detection, Qwen2.5-VL achieves a good performance of 43.1 mAP on ODinW-13,
surpassing most LVLMs and quickly narrowing the gap between generalist models and specialist models.
In addition, Qwen2.5-VL unlocks the point-based grounding ability so that it could precisely locate the
very details of a certain object, which was difficult to represent by a bounding box in the past. Qwen2.5-
VL’s counting ability also makes great progress, achieving a leading accuracy of 93.6 on CountBench with
Qwen2.5-VL-72B using a “detect then count”-style prompt.

3.3.4 Video Understanding and Grounding

We assessed our models across a diverse range of video understanding and grounding tasks, utilizing
benchmarks that include videos ranging from a few seconds to several hours in length. Table 8 demon-
strates the performance comparison between Qwen2.5-VL models and top-tier proprietary models on the
following video benchmarks: Video-MME (Fu et al., 2024a), Video-MMMU (Hu et al., 2025), MMVU (Zhao
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Table 6: Performance of Qwen2.5-VL and other models on grounding.

Datasets Gemini 1.5 Grounding Molmo InternVL2.5 Qwen2.5-VL Qwen2.5-VL Qwen2.5-VL

Pro DINO 72B 78B 72B 7B 3B
Refcocoy,,; 73.2 90.6 - 93.7 92.7 90.0 89.1
Refcocoyesia 729 93.2 - 95.6 94.6 92.5 91.7
Refcocoyesip 74.6 88.2 - 925 89.7 85.4 84.0
Refcoco+y,4 62.5 88.2 - 90.4 88.9 84.2 82.4
Refcoco+esia 63.9 89.0 - 94.7 92.2 89.1 88.0
Refcoco+estp 65.0 75.9 - 86.9 83.7 76.9 74.1
Refcocog,, 75.2 86.1 - 92.7 89.9 87.2 85.2
Refcocogtest 76.2 87.0 - 92.2 90.3 87.2 85.7
ODinW 36.7 55.0 - 31.7 43.1 37.3 37.5
PointGrounding - - 69.2 - 67.5 67.3 58.3

Table 7: Performance of Qwen2.5-VL and other models on counting.

Datasets Gemini 1.5-Pro GPT-40 Claude-3.5 Sonnet Molmo-72b InternVL2.5-78B Qwen2.5-VL-72B
CountBench 85.5 87.9 89.7 91.2 72.1 93.6

et al.,, 2025), MVBench (Li et al., 2024d), MMBench-Video (Fang et al., 2024), LongVideoBench (Wu et al,,
2024a), EgoSchema (Mangalam et al., 2023), PerceptionTest (Patraucean et al., 2024), MLVU (Zhou et al.,
2024), LVBench (Wang et al., 2024g), TempCompass (Liu et al., 2024c) and Charades-STA (Gao et al., 2017).
Notably, on LVBench and MLVU, which evaluate long-form video understanding capabilities through
question-answering tasks, Qwen2.5-VL-72B achieves remarkable results, significantly outperforming
strong competitors such as GPT-4o.

By utilizing the proposed synchronized MRoPE, Qwen2.5-VL enhances its capabilities in time-sensitive
video understanding, featuring improved timestamp referencing, temporal grounding, dense captioning,
and additional functionalities. On the Charades-STA dataset, which assesses the capability to accurately
localize events or activities with precise timestamps, Qwen2.5-VL-72B achieves an impressive mloU
score of 50.9, thereby surpassing the performance of GPT-4o. For all evaluated benchmarks, we capped
the maximum number of frames analyzed per video at 768, with the total number of video tokens not
exceeding 24,576.

Table 8: Performance of Qwen2.5-VL and other models on video benchmarks.

Datasets Gemini 1.5-Pro GPT-40 Qwen2.5-VL-72B Qwen2.5-VL-7B Qwen2.5-VL-3B
Video Understanding Tasks
Video-MMEy, /4 sup. 75.0 71.9 73.3 65.1 61.5
Video-MME,, ¢up. 81.3 77.2 79.1 71.6 67.6
Video-MMMU 53.9 61.2 60.2 47.4 -
MMVU, 4 65.4 67.4 62.9 50.1 -
MVBench 60.5 64.6 70.4 69.6 67.0
MMBench-Video 1.30 1.63 2.02 1.79 1.63
LongVideoBenchy,; 64.0 66.7 60.7 56.0 54.2
LVBench 33.1 30.8 47.3 453 43.3
EgoSchemayest 71.2 72.2 76.2 65.0 64.8
PerceptionTestest - - 73.2 70.5 66.9
MLVUp Avg - 64.6 74.6 70.2 68.2
TempCompassayg 67.1 73.8 74.8 71.7 64.4
Video Grounding Tasks
Charades-STAmiou - 35.7 50.9 43.6 38.8
3.3.5 Agent

Agent capabilities within multimodal models are crucial for enabling these models to effectively interact
with real-world devices. We assess the agent capabilities of Qwen2.5-VL through various aspects. The Ul
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elements grounding is evaluated by ScreenSpot (Cheng et al., 2024) and ScreenSpot Pro (Li et al., 2025a).
Offline evaluations are conducted on Android Control (Li et al., 2024f), while online evaluations are
performed on platforms including AndroidWorld (Rawles et al., 2024), MobileMiniWob++ (Rawles et al.,
2024), and OSWorld (Xie et al., 2025). We compare the performance of Qwen2.5-VL-72B againsts other
prominent models, such as GPT-40 (OpenAl, 2024), Gemini 2.0 (Deepmind, 2024), Claude (Anthropic,
2024b), Aguvis-72B (Xu et al., 2024), and Qwen2-VL-72B (Wang et al., 2024¢). The results are demonstrated
in Table 9.

Table 9: Performance of Qwen2.5-VL and other models on GUI Agent benchmarks.

Benchmarks GPT-40 Gemini2.0 Claude Aguvis-72B Qwen2-VL-72B Qwen2.5-VL-72B
ScreenSpot 18.1 84.0 83.0 89.2 - 87.1
ScreenSpot Pro - - 17.1 23.6 1.6 43.6
Android Control Highgy 20.8 28.5 12.5 66.4 59.1 67.36
Android Control Lowgym 194 60.2 194 84.4 59.2 93.7
AndroidWorldsg 34.5% (SoM) 26% (SoM)  27.9% 26.1% 6% (SoM) 35%
MobileMiniWob++gg 61% 42% (SoM) 61% (SoM) 66% 50% (SoM) 68%
OSWorld 5.03 4.70 14.90 10.26 242 8.83

The performance of Qwen2.5-VL-72B demonstrates exceptional advancements across GUI grounding
benchmarks. It achieves 87.1% accuracy on ScreenSpot, competing strongly with Gemini 2.0 (84.0%)
and Claude (83.0%), while notably setting a new standard on ScreenSpot Pro with 43.6% accuracy -
far surpassing both Aguvis-72B (23.6%) and its foundation Qwen2-VL-72B (1.6%). Leveraging these
superior grounding capabilities, Qwen2.5-VL-72B significantly outperforms baselines across all offline
evaluation benchmarks with a large gap. In online evaluation, some baselines have difficulty completing
tasks due to limited grounding capabilities. Thus, we apply the Set-of-Mark (SoM) to the inputs of
these models. The results show that Qwen2.5-VL-72B can outperform the baselines on AndroidWorld
and MobileMiniWob++ and achieve comparable performance on OSWorld in online evaluation without
auxiliary marks. This observation suggests that Qwen2.5-VL-72B is able to function as an agent in real
and dynamic environments.

4 Conclusion

We present Qwen2.5-VL, a state-of-the-art vision-language model series that achieves significant advance-
ments in multimodal understanding and interaction. With enhanced capabilities in visual recognition,
object localization, document parsing, and long-video comprehension, Qwen2.5-VL excels in both static
and dynamic tasks. Its native dynamic-resolution processing and absolute time encoding enable robust
handling of diverse inputs, while Window Attention reduces computational overhead without sacrificing
resolution fidelity. Qwen2.5-VL caters to a wide range of applications, from edge Al to high-performance
computing. The flagship Qwen2.5-VL-72B matches or surpasses leading models like GPT-40, and Claude
3.5 Sonnet, particularly in document and diagram understanding, while maintaining strong performance
on pure text tasks. The smaller Qwen2.5-VL-7B and Qwen2.5-VL-3B variants outperform similarly sized
competitors, offering efficiency and versatility. Qwen2.5-VL sets a new benchmark for vision-language
models, demonstrating exceptional generalization and task execution across domains. Its innovations
pave the way for more intelligent and interactive systems, bridging perception and real-world application.

5 Authors

Core Contributors: Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang,
Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jiangiang
Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, Junyang Lin

Contributors': An Yang, Binyuan Hui, Bowen Yu, Chen Cheng, Dayiheng Liu, Fan Hong, Fei Huang,
Jiawei Liu, Jin Xu, Jianhong Tu, Jianyuan Zeng, Jie Zhang, Jinkai Wang, Jianwei Zhang, Jingren Zhou,
Kexin Yang, Mei Li, Ming Yan, Na Ni, Rui Men, Songtao Jiang, Xiaodong Deng, Xiaoming Huang, Ximing
Zhou, Xingzhang Ren, Yang Fan, Yichang Zhang, Yikai Zhu, Yuqiong Liu, Zhifang Guo

1 Alphabetical order.
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